Home Medical Factors Facing Pilots Aviation Stories Of Interest FAA Exam Aviation News Maintenance and Aircraft Mechanics General Aviation Helicopters
Aviation History Legal Issues In Aviation Links To Other Sites Editorials Hot Air Balloon Aviation Training Handbooks Read Online Upcoming Events Editorials

 



 
New NASA Funded Forecast System Helps Transoceanic Flights Avoid Storms
 
By Steve Hall
 

December 12, 2012 - A new NASA-funded prototype system developed by the National Center for Atmospheric Research (NCAR) of Boulder, Colo., now is providing weather forecasts that can help flights avoid major storms as they travel over remote ocean regions. The eight-hour forecasts of potentially dangerous atmospheric conditions are designed for pilots, air traffic controllers and others involved in transoceanic flights. 

The NCAR-based system combines satellite data and computer weather models to produce maps of storms over much of the world's oceans. The system is based on products that NCAR has developed to alert pilots and air traffic controllers about storms and related hazards, such as turbulence and lightning, over the continental United States. Development of the forecasts was spurred in part by the 2009 crash of Air France Flight 447, which encountered a complex of thunderstorms over the Atlantic Ocean. 

 

On the night of Sunday, May 31 to Monday, 1 June 2009, the Airbus A330-203 registered F-GZCP and operated by Air France crashed into the Atlantic Ocean killing all 228 onboard. Strong convective weather was in the vicinity. 

The plane took off at 10: 29 PM scheduled flight AF 447 from Rio de Janeiro Galeao and Paris Charles de Gaulle. Twelve crew members (3 flight crew, 9 cabin crew) and 216 passengers, from thirty-two nationalities were on board. The last radio exchange between the crew and Brazilian ATC occurred at 1 h 35. Between 02 h 10 and 02 h 15, a position message and 24 maintenance messages were transmitted by the ACARS automatic system. 

The system was funded by NASA's Applied Sciences Program, which supports efforts to discover and demonstrate innovative and practical uses of NASA Earth science and satellite observations. NCAR worked with the Massachusetts Institute of Technology's Lincoln Laboratory, the Naval Research Laboratory, and the University of Wisconsin-Madison to create the system.

 

 

"These new forecasts can help fill an important gap in our aviation system," said NCAR's Cathy Kessinger, lead researcher on the project. "Pilots have had limited information about atmospheric conditions as they fly over the ocean, where conditions can be severe. By providing them with a picture of where significant storms will be during an eight-hour period, the system can contribute to both the safety and comfort of passengers on flights." 

The forecasts, which continue to be tested and modified, cover most of the Atlantic and Pacific oceans, where NCAR has real-time access to geostationary satellite data. The forecasts are updated every three hours. 

Pilots of transoceanic flights currently get preflight briefings and, in certain cases involving especially intense storms, in-flight weather updates every four hours. They also have onboard radar, but that information is of limited value for strategic flight planning while en route.

"Turbulence is the leading cause of injuries in commercial aviation," said John Haynes, Applied Sciences Program manager at NASA Headquarters in Washington. "This prototype system is of crucial importance to pilots and is another demonstration of the practical benefit of NASA's Earth observations." 

Pinpointing turbulence associated with storms over the oceans is far more challenging than it is over land because geostationary satellites, unlike ground-based radar, cannot see within the clouds. Thunderstorms may develop quickly and move rapidly, rendering the briefings and weather updates obsolete. Onboard radars lack the power to see long distances or through dense clouds. 

As a result, pilots often must choose between detouring hundreds of miles around potentially stormy areas or flying directly through a region that may or may not contain intense weather. Storms may be associated with hazardous windshear and icing conditions in addition to lightning, hail and potentially severe turbulence. 

To create the forecasts, Kessinger and her colleagues first turned to geostationary satellite measurements to identify regions of the atmosphere that met two conditions: particularly high cloud tops and water vapor at high altitudes. These two conditions are a sign of powerful storms and strong updrafts that can buffet an aircraft. The scientists next used fuzzy logic and data fusion techniques to home in on storms of particular concern, and applied object tracking techniques and simulations of wind fields to predict storm locations at hourly intervals out to eight hours. 

Researchers verified the forecasts using a variety of data from NASA Earth observations, including the Tropical Rainfall Measuring Mission (TRMM) satellite. 

"These advanced techniques enable us to inform pilots about the potential for violent downdrafts and turbulence, even over the middle of the ocean where we don't have land-based radar or other tools to observe storms in detail," Kessinger said.

 
 
Other News Stories (For the latest news please checkout our home page)
 
 
 
 
blog comments powered by Disqus  
Home Aviation News Aviation Stories Of Interest FAA Exam Upcoming Events Links To Other Sites General Aviation Helicopters Medical Factors Facing Pilots
Maintenance and Aircraft Mechanics Hot Air Balloon Aviation Training Handbooks Read Online Aviation History Legal Issues In Aviation Sea Planes Editorials
 
 ©AvStop Online Magazine                                                                 Contact Us                                                  Return To News                                          Bookmark and Share
 
 

AvStop Aviation News and Resource Online Magazine